光学轮廓仪是对物体的轮廓、二维尺寸、二维位移进行测试与检验的仪器,作为精密测量仪器在汽车制造和铁路行业的应用十分广泛。是通过仪器的触针与被测表面的滑移进行测量的,是接触测量。其主要优点是可以直接测量某些难以测量到的零件表面,如孔、槽等的表面粗糙度,又能直接按某种评定标准读数或是描绘出表面轮廓曲线的形状,且测量速度快、结果可靠、操作方便。但是被测表面容易被触针划伤,为此应在保证可靠接触的前提下尽量减少测量压力。
1、共聚焦
共聚焦技术可以用来测量各类样品表面的形貌。它比光学显微镜有更高的横向分辨率,可达0.10um。利用它可实现临界尺寸的测量。当用150倍、0.95数值孔径的镜头时,共聚焦在光滑表面测量斜率达70°(粗糙表面达86°)。专的共聚焦算法保证Z轴测量重复性在纳米范畴。
2、干涉
①相位差干涉(PSI)
相位差干涉是一种亚纳米级精度的用于测量光滑表面高度形貌的技术。它的优势在于任何放大倍数都可以保证亚纳米级的纵向分辨率。使用2.5倍的镜头就能实现超高纵向分辨率的大视场测量。
②白光干涉(VSI)
白光干涉是一种纳米级测量精度的用于测量各种表面高度形貌的技术。它的优势在于任何放大倍数都可以保证纳米级的纵向分辨率。
3、多焦面叠加
多焦面叠加技术是用来测量非常粗糙的表面形貌。根据Sensofar在共聚焦和干涉技术融合应用方面的丰富经验,特别设计了此功能来补足低倍共聚焦测量的需要。该技术的最大亮点是快速(mm/s)、扫描范围大和支援斜率大(最大86°)。此功能对工件和模具测量特别有用。
4、薄膜测量
用分光反射计可以完善地解决薄膜厚度测量。Sneox在增加了分光反射计后可以测量10nm的膜厚和最多10层膜。由于是通过显微镜头测量,最小的测量点为5um。因为系统里有组合的LED光源,所以实时观察和膜厚测量能同时进行。